R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection
نویسندگان
چکیده
In this paper, we propose a novel method called Rotational Region CNN (R2CNN) for detecting arbitrary-oriented texts in natural scene images. The framework is based on Faster R-CNN [1] architecture. First, we use the Region Proposal Network (RPN) to generate axis-aligned bounding boxes that enclose the texts with different orientations. Second, for each axis-aligned text box proposed by RPN, we extract its pooled features with different pooled sizes and the concatenated features are used to simultaneously predict the text/non-text score, axis-aligned box and inclined minimum area box. At last, we use an inclined non-maximum suppression to get the detection results. Our approach achieves competitive results on text detection benchmarks: ICDAR 2015 and ICDAR 2013.
منابع مشابه
Sliding Line Point Regression for Shape Robust Scene Text Detection
Traditional text detection methods mostly focus on quadrangle text. In this study we propose a novel method named sliding line point regression (SLPR) in order to detect arbitrary-shape text in natural scene. SLPR regresses multiple points on the edge of text line and then utilizes these points to sketch the outlines of the text. The proposed SLPR can be adapted to many object detection archite...
متن کاملScene text detection via extremal region based double threshold convolutional network classification
In this paper, we present a robust text detection approach in natural images which is based on region proposal mechanism. A powerful low-level detector named saliency enhanced-MSER extended from the widely-used MSER is proposed by incorporating saliency detection methods, which ensures a high recall rate. Given a natural image, character candidates are extracted from three channels in a percept...
متن کاملText Recognition and Retrieval in Natural Scene Images
In the past few years, text in natural scene images has gained potential to be a key feature for content based retrieval. They can be extracted and used in search engines, providing relevant information about the images. Robust and efficient techniques from the document analysis and the vision community were borrowed to solve the challenge of digitizing text in such images in the wild. In this ...
متن کاملArbitrary-Oriented Scene Text Detection via Rotation Proposals
This paper introduces a novel rotation-based framework for arbitrary-oriented text detection in natural scene images. We present the Rotation Region Proposal Networks (RRPN), which is designed to generate inclined proposals with text orientation angle information. The angle information is then adapted for bounding box regression to make the proposals more accurately fit into the text region in ...
متن کاملRobust Scene Text Detection with Convolution Neural Network Induced MSER Trees
Maximally Stable Extremal Regions (MSERs) have achieved great success in scene text detection. However, this low-level pixel operation inherently limits its capability for handling complex text information efficiently (e. g. connections between text or background components), leading to the difficulty in distinguishing texts from background components. In this paper, we propose a novel framewor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.09579 شماره
صفحات -
تاریخ انتشار 2017